Convenient Preparation of Aromatic Aldehydes via DDQ Oxidation. Application in the Synthesis of a Tripodand Containing Octahydroacridine Moieties ${ }^{1}$)

Oliver Temme, and Roland Fröhlich
Münster, Organisch-Chemisches Institut der Universität

Sabine Laschat
Braunschweig, Institut für Organische Chemie der Technischen Universität

Received January 8th, 1998

Abstract

Methyloctahydroacridines 7a-d were obtained by a one-pot imine condensation/Lewis acid-catalyzed cyclization from aniline derivatives $5 \mathbf{5 a}-\mathbf{d}$ and aldehyde 6. Only those compounds 7 could be oxidized with DDQ to the corresponding octahydroacridine-7-carbaldehydes 9 , which

bear a meta-chloro or bromo substituent (with respect to the methyl group) in addition to the para-amino group (i.e. $7 \mathbf{c}, \mathbf{d}$ $\rightarrow \mathbf{9 c}, \mathbf{d})$. Aldehyde 9 c was further converted to the novel tripodand $\mathbf{1 1}$ which was characterized by X-ray crystal structure analysis.

Host-guest interactions and the synthesis of novel artificial receptors are two of the most intensively studied topics in the area of supramolecular chemistry [1]. Especially semiflexible podands, cryptands and molecular tweezers have received increased interest. This is due to the fact that the combination of rigid binding pockets with flexible tethers allows precise adjustment of noncovalent interactions [2]. Based on our recent findings that octahydroacridines 2 can be easily obtained by a highly diastereoselective Lewis acid-catalyzed cyclization of N-arylimines 1 [3], we decided to use them as rigid substructures in novel podands 4. As a potential coupling reaction of 2 and 3 we chose the imine condensation. This required the introduction of an aldehyde function on the aromatic moiety of 2 prior to assembly of 4. The results towards this end and the final steps towards a novel octahydroacridine containing tripodand 4 are described in this paper.

Results and Discussion

Oxidation studies were first carried out with 8-methyloctahydroacridine 7a ($\mathrm{X}=\mathrm{H}$), which was prepared by

$4 \quad Y=N$
Scheme 1

[^0]condensation of 4-methylaniline 5a with 3,3,7-trime-thyl-6-octenal 6 followed by MeAlCl_{2}-catalyzed cyclization of the N-arylimine [3]. Our initial attempts to obtain the aldehyde 9 a with chromyl chloride [4] lead to an inseparable mixture of various oxidation products. Cer(IV) ammonium nitrate in acetic acid is known to oxidize substituted toluenes to the corresponding benzaldehyde derivatives [5, 6]. However, this reagent was not applied to octahydroacridine 7a, because undesired side reactions like formation of iminium ions and subsequent epimerization at $\mathrm{C}-4 \mathrm{a}$ might occur under acidic conditions. Rao and Naidu reported the clean conversion of 7,8-dimethoxy-5-methyl-1-phenyldihydronaphthaline to the corresponding aldehyde via DDQ oxidation [7]. Following their procedure a solution of compound 7a and DDQ was refluxed in dioxane for several hours. In contrast to the literature results, no

3 equiv. DDQ
dioxane reflux, 48 h

Scheme 2

trace of the desired aldehyde 9a was found. We reasoned that the meta- and para-oriented methoxy groups in Rao and Naidu's case enhanced the reactivity of the benzylic hydrogen atoms. Unfortunately 6 -methoxy-

8 -methyloctahydroacridine 7 ($\mathrm{X}=\mathrm{OMe}$) could not be obtained from 2-methoxy-4-methylaniline, because the methoxy group interferes with the Lewis acid-catalyzed cyclization. In order to mimic the electron-donating effect of the methoxy group, we decided to introduce an additional halogen atom X at $\mathrm{C}-5$ of the octahydroacridine 7 . Thus compounds $\mathbf{7 b}-\mathbf{d}(\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br})$ were prepared by the Lewis acid-catalyzed cyclization from 2-halo-4-methyl-anilines $\mathbf{5 b}$-d as described for $\mathbf{7 a}$. In the case of aniline derivative $\mathbf{5 c}$ the corresponding cis-configurated octahydroacridine 8 was obtained as a byproduct. When submitting the octahydroacridines $7 \mathrm{~b}-$ d to the DDQ oxidation, we were pleased to find that both chloro and bromo derivative $\mathbf{7 c}$ and $7 \mathbf{d}$ were converted to the aldehydes $9 \mathbf{c}, \mathrm{~d}$ in 52% and 43% yield, respectively. Treatment of the fluoro compound $7 \mathbf{b}$ with DDQ under similar conditions yielded only starting material.

In order to obtain tripodands 11, 12 octahydroacridine aldehydes $9 \mathrm{c}, \mathrm{d}$ were treated with triamine 10 in the presence of molecular sieves $4 \AA$ (Scheme 3). Whereas the chloro-substituted tripodand $\mathbf{1 1}$ was isolated in good yield, condensation of 10 and the bromo compound 9 d proceeded only slowly and the desired tripodand 12 could not be purified sufficiently.

Scheme 3
Fortunately, the X-ray crystal structure of tripodand 11 could be determined (Figure 1) [8]. In the solid state

11 has a noncrystallographic threefold rotational symmetry with the C_{3} axis being oriented parallel to the [251] direction.

Fig. 1 X-ray crystal structure of tripodand 11. Hydrogen atoms were omitted for clarity.

In conclusion a DDQ oxidation of 6-chloro-8-methyloctahydroacridine 7 c and the corresponding 6-bromo derivative $7 \mathbf{d}$ to the aromatic aldehydes $\mathbf{9 b}, \mathbf{c}$ has been achieved. Compound 9 b could be converted to the novel tripodand 11. The presence of three chloro-substituents allow further functionalization of $11 \mathrm{e} . \mathrm{g}$. by palladium-catalyzed coupling reactions.

Generous financial support by the Deutsche Forschungsgemeinschaft (Gerhard Hess Preis for S.L.) is gratefully acknowledged.

Experimental

All reactions were carried out under argon by using standard Schlenk technique. Solvents were dried and deoxygenated by standard procedures. Analytical TLC was performed on precoated Merck Si 254 F plates (0.25 mm thickness) and products were visualized with a solution of phosphomolybdic acid in $\mathrm{EtOH}(5 \%, v / v)$. Flash chromatography [9] was carried out with Merck silica gel 60 (230-400 mesh). - NMR spectra: Bruker AC $200 \mathrm{P}\left(200 \mathrm{MHz}-{ }^{-1} \mathrm{H}, 50 \mathrm{MHz}-{ }^{-13} \mathrm{C}\right)$, Bruker ARX $300\left(300 \mathrm{MHz}-{ }^{1} \mathrm{H}, 75 \mathrm{MHz}{ }^{-13} \mathrm{C}\right)$ and Varian Unity-plus (600 $\mathrm{MHz}-{ }^{1} \mathrm{H}, 150 \mathrm{MHz-}{ }^{13} \mathrm{C}$). Multiplets in ${ }^{13} \mathrm{C}$-NMR spectra were determined by DEPT and APT experiments. - Melting points
(uncorrected): Gallenkamp melting point apparatus. - IR spectra: Nicolet 5DXC FT-IR spectrometer. - Mass spectra: Finnigan Model MAT 312 (EI), Finnigan Model MAT 8230 (CI, reactand gas: NH_{3}). - GC-mass spectra: Varian GC 3400 coupled with a Varian Saturn 2 (ion trap) or with a Finnigan MAT 8230 (EI). - GC analysis: HP5-fused silica capillary column (ID 0.32 mm , length 25 m), HPU2-fused silica capillary column (ID 0.2 mm , length 25 m). Temperature program: $220^{\circ} \mathrm{C}$ with $1^{\circ} \mathrm{C} \mathrm{min}^{-1}$ until $280^{\circ} \mathrm{C}$, then isotherm for 20 min . The following compounds were prepared according to literature procedures: 3,3,7-trimethyl-6-octenal 6 [10], triamine 10 [11].

Preparation of Octahydroacridines (7), (8) (General Procedure)

To a solution of 4-methylaniline derivative $5(5.00 \mathrm{mmol})$ and 3,3,7-trimethyl-6-octenal 6 ($840 \mathrm{mg}, 5.00 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(4.5 \mathrm{ml})$ was added powdered molecular sieve $4 \AA(1 \mathrm{~g})$ and the mixture was stirred for 10 h at room temperature. After filtration via Celite the solvent was removed in vacuo and the crude N -arylimine was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$ and cooled to $-78^{\circ} \mathrm{C}$. Then were added dropwise $\mathrm{MeAlCl}_{2}(6.0 \mathrm{ml}, 6.00$ mmol, 1 M solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) and the resulting mixture was stirred for 4 d at room temperature. The mixture was poured slowly onto ice-cold $2 \mathrm{~N} \mathrm{NaOH}(250 \mathrm{ml})$. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 25 \mathrm{ml})$. The combined organic layers were dried over MgSO_{4} and evaporated in vacuo.
(4aRS, 9aSR)-3,3,7,9,9-Pentamethyl-1,2,3,4,4a,9,9a,10octahydroacridine (7a)
The crude product was obtained as a single diastereomer. Flash chromatography on SiO_{2} (hexane/ethyl acetate $75: 1$) yielded $3.96 \mathrm{~g}(15.4 \mathrm{mmol}, 77 \%)$ of colorless crystals. m.p. $62{ }^{\circ} \mathrm{C}$. $\operatorname{IR}(\mathrm{KBr}) v / \mathrm{cm}^{-1}=3400,3385,3036,2962,2851,1615,1508$, 807. - ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta / \mathrm{ppm}=7.20(\mathrm{~d}, J=1.7$ $\mathrm{Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 6.93(\mathrm{dd}, J=7.9 / 1.7 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 6.37(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}$), 3.03 (ddd, $J=10.7 / 10.7 / 4.5 \mathrm{~Hz}, 1 \mathrm{H}, 4 \mathrm{a}-\mathrm{H}$), 2.34 (s, 3H, H-14), $1.63-1.07$ (m, 7H, 1-H, 2-H, 4-H, 9a-H), $1.35,1.19(\mathrm{~s}, 6 \mathrm{H}, 12-\mathrm{H}, 13-\mathrm{H}), 0.97,0.92(\mathrm{~s}, 6 \mathrm{H}, 10-\mathrm{H}$, $11-\mathrm{H}) .-{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta \mathrm{ppm}=141.6,131.4$, $127.6,127.4,125.8,114.6$ (С-5, С-5a, С-6, С-7, С-8, С-8a), $48.4,47.5,39.6,35.1,33.3,30.9,27.7,27.2,25.3,21.3,21.1$ (C-1, C-2, C-3, C-4, C-4a, C-9, C-9a, C-10, C-11, C-12, C-13, C-14). - MS (70 eV); $m / z(\%): 257\left(90, \mathrm{M}^{+}\right), 242(100)$, 158 (53), 69 (80), 57 (64), 55 (74).
$\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}$: Calcd.: 257.2143 Found: 257.2149 (MS);
Calcd.: C 84.05 H 10.50 N 5.45
Found: C 83.98 H 10.76 N 5.50.
(4aRS,9aSR)-3,3,7,9,9-Pentamethyl-5-fluoro-1,2,3,4,4a,9. $9 a, 10$-octahydroacridine (7b)
The crude product was obtained as a single diastereomer. Flash chromatography on SiO_{2} (hexane/ethyl acetate $100: 1$): $3.90 \mathrm{~g}(14.2 \mathrm{mmol}, 71 \%)$ of pale yellow crystals. m.p. $62^{\circ} \mathrm{C}$. - IR (KBr) $v / \mathrm{cm}^{-1}=3417,3042,2988,2847,1630,1585$, 1510, $1458-1278,495 .-{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): δ $\mathrm{ppm}=6.92(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{H}), 6.76(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 3.57$ (s, 1H, NH), 2.97 (ddd, $J=10.9 / 10.9 / 4.3 \mathrm{~Hz}, 1 \mathrm{H}, 4 \mathrm{a}-\mathrm{H}$), 2.08
($\mathrm{s}, 3 \mathrm{H}, 14-\mathrm{H}), 1.58-1.00(\mathrm{~m}, 7 \mathrm{H}, 1-\mathrm{H}, 2-\mathrm{H}, 4-\mathrm{H}, 9 \mathrm{a}-\mathrm{H}), 1.29$, $1.12(\mathrm{~s}, 6 \mathrm{H}, 12-\mathrm{H}, 13-\mathrm{H}), 0.92,0.86(\mathrm{~s}, 6 \mathrm{H}, 10-\mathrm{H}, 11-\mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta / \mathrm{ppm}=149.8(\mathrm{~d}, J=240 \mathrm{~Hz}$, C-5), 132.8, 129.5, 128.7, 122.7, 113.4 (C-5a, C-6, C-7, C-8, C-8a), 47.2, 46.1, 38.7, 34.4, 32.4, 30.1, 26.6, 26.2, 24.4, 20.5, 20.1 (C-1, C-2, C-3, C-4, C-4a, C-9, C-9a, C-10, C-11, C-12, C-13, C-14). - MS (70 eV); m/z (\%): 275 ($100, \mathrm{M}^{+}$), 260 (85), 190 (58), 176 (70), 6965), 57 (66), 55 (62).
$\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NF}$ Calcd.: 275.2049 Found: 275.2056 (MS); Calcd.: C 78.54 H 9.45 N 5.09 Found: C 78.54 H 9.54 N 5.14.
3,3,7,9,9-Pentamethyl-5-chloro-1,2,3,4,4a,9,9a,10-octahydroacridines ($7 \mathrm{c}, 8$)
The crude product was obtained as a mixture of diastereomers ($7 \mathrm{c}: 8=10: 1$ by GC). Flash chromatography on SiO_{2} (eluens: hexane/ethyl acetate $200: 1$) gave $81 \mathrm{mg}(0.28 \mathrm{mmol}, 7 \%)$ of yellow crystals as the first fraction (8) and $740 \mathrm{mg}(2.54 \mathrm{mmol}$, 64%) of pale yellow crystals as the second fraction (7e).
(4aRS, 9 aSR)-isomer (7 c)
m.p. $100^{\circ} \mathrm{C}$. - IR (KBr) $945 \mathrm{~cm}^{-1}, 2909,2866,1500,1362 .-$ ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=6.95(\mathrm{~d}, J=1.4 \mathrm{~Hz}$, $1 \mathrm{H}, 8-\mathrm{H}), 6.91(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 4.10(\mathrm{~s}$, broad, NH$)$, 3.23 (ddd, $J=10.6 / 10.4 / 4.0 \mathrm{~Hz}, 1 \mathrm{H}, 4 \mathrm{a}-\mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}$, $14-\mathrm{H}), 1.77-1.18$ (m, $7 \mathrm{H}, 1-\mathrm{H}, 2-\mathrm{H}, 4-\mathrm{H}, 9 \mathrm{a}-\mathrm{H}), 1.33,1.05$ (s, $6 \mathrm{H}, 12-\mathrm{H}, 13-\mathrm{H}), 1.00(\mathrm{~s}, 6 \mathrm{H}, 10-\mathrm{H}, 11-\mathrm{H}) .-{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=136.9,132.6(\mathrm{C}-5 \mathrm{a}, \mathrm{C}-5), 126.9$, 125.5 (C-6, C-8), 125.4, 117.3 (C-7, C-8a), 47.5, 47.2, 39.2, $35.3,32.9,31.0,27.0,26.7,25.1,20.9,20.5$ (C-1, C-2, C-3, C-4, C-4a, C-9, C-9a, C-10, C-11, C-12, C-13, C-14). - MS $(70 \mathrm{eV}) ; m / z(\%): 291\left(80, \mathrm{M}^{+}\right), 276(85), 192(62), 97(60)$, 69 (100), 55 (87).
$\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NCl}$: Calcd.: 291.1757 Found: 291.1762 (MS); Calcd: C 74.18 H 8.93 N 4.80 Found: C 74.24 H 9.11 N 4.84.

(4aSR,9aSR)-isomer (8)

$m . p .81^{\circ} \mathrm{C} .-\mathrm{IR}(\mathrm{KBr}) v / \mathrm{cm}^{-1}=3433,3037,2978,2843$, 1612, 1506, 1452, 1363, 1298, 1267. - ${ }^{1} \mathrm{H}$ NMR $(200 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=7.06(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 6.93(\mathrm{~d}, J=$ $1.3 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 4.11(\mathrm{~s}, \mathrm{NH}), 3.70(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}$, $4 \mathrm{a}-\mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}, 14-\mathrm{H}), 1.39-1.05(\mathrm{~m}, 7 \mathrm{H}, 1-\mathrm{H}, 2-\mathrm{H}, 4-\mathrm{H}$, $9 \mathrm{a}-\mathrm{H}), 1.28,1.17(\mathrm{~s}, 6 \mathrm{H}, 12-\mathrm{H}, 13-\mathrm{H}), 1.08,0.90(\mathrm{~s}, 6 \mathrm{H}$, $10-\mathrm{H}, 11-\mathrm{H}) .-{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta / \mathrm{ppm}=135.9$ (C-5), 128.9 (C-5a), 126.8, 124.7 (C-6, C-8), 124.3, 116.1 (C-7, C-8a), 46.7, 44.6 (C-4a, C-9a), 44.5, 39.1, 35.8, 29.2, $19.834 .1,32.7,27.1,26.0,20.4$ (C-1, C-2, C-3, C-4, C-9, C-10, C-11, C-12, C-13, C-14). - MS (70 eV); m / z (\%): 291 $\left(60, \mathrm{M}^{+}\right), 276$ (100), $69(60), 55$ (60).
$\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NCl}: \quad$ Calcd.: 291.1757 Found: 291.1762 (MS); Calcd.: C 74.18 H 8.93 N 4.80 Found: C 74.33 H 9.13 N 4.96.
(4aRS, 9aSR)-3,3,7,9,9-Pentamethyl-5-bromo-1,2,3,4,4a, 9,9a,10-octahydroacridine (7d)
The crude product was obtained as a single diastereomer. Recrystallization from benzene yielded $805 \mathrm{mg}(2.40 \mathrm{mmol}$, 48%) of colorless crystals. m.p. $124^{\circ} \mathrm{C} .-\mathrm{IR}(\mathrm{KBr}) v / \mathrm{cm}^{-1}=$ $3406,3399,3031,2967,2848,1611,1559,1494,1362,495$.
$-{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=7.23(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{H})$, $7.06(\mathrm{~s}, 1 \mathrm{H}, 6 \mathrm{H}), 4.18(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 3.04$ (ddd, $J=10.7 / 10.7 /$ $4.9 \mathrm{~Hz}, 1 \mathrm{H}, 4 \mathrm{a}-\mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}, 14-\mathrm{H}), 1.58-1.05(\mathrm{~m}, 7 \mathrm{H}$, $1-\mathrm{H}, 2-\mathrm{H}, 4-\mathrm{H}, 9 \mathrm{a}-\mathrm{H}), 1.27,1.09(\mathrm{~s}, 6 \mathrm{H}, 12-\mathrm{H}, 13-\mathrm{H}), 0.92$, $0.85(\mathrm{~s}, 6 \mathrm{H}, 10-\mathrm{H}, 11-\mathrm{H}) .-{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta / \mathrm{ppm}=138.5,132.8,130.7,126.5,126.1,108.7(\mathrm{C}-5 \mathrm{a}, \mathrm{C}-5$, C-6, C-7, C-8a, C-8), 47.4, 47.0, 39.4, 35.5, 33.1, 30.8, 27.0, 26.8, 25.1, 21.1, 20.5, (C-1, C-2, C-3, C-4, C-4a, C-9, C-9a, C-10, C-11, C-12, C-13, C-14). - MS (70 eV); m/z (\%): 335 $\left(21, \mathrm{M}^{+}\right), 320(28), 149(22), 97(30), 83(51), 69(78), 57$ (100), 55 (90).
$\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NBr} \quad$ Calcd.: 335.1249 Found: 335.1241 (MS);
Calcd.: C 64.30 H 7.70 N 4.20
Found: C 64.37 H 7.83 N 4.24.

Oxidation of Octahydroacridines (7c), (7d) (General Procedure)

To a solution of octahydroacridine $7 \mathbf{c}, \mathbf{d}(1.90 \mathrm{mmol})$ in dioxane (40 ml) was added 2,3-dichloro-5,6-dicyano-p-benzoquinone $(1.30 \mathrm{~g}, 5.70 \mathrm{mmol})$ and the mixture was refluxed for 3 d . Then the mixture was cooled to room temperature, filtered and the filtrate was evaporated in vacuo. The remaining solid was filtered via neutral $\mathrm{Al}_{2} \mathrm{O}_{3}$ (eluens: benzene) and the solvent was removed.
(4aRS,9aSR)-3,3,9,9-Tetramethyl-5-chloro-1,2,3,4,4a,9,9a, 10-octahydroacridine-7-carboxaldehyde (9c)
$0.30 \mathrm{~g}(0.98 \mathrm{mmol}, 52 \%)$ of a pale pink solid. m.p. $126^{\circ} \mathrm{C} .-$ IR (KBr) $v / \mathrm{cm}^{-1}=3412,2962,2838,1878,1594,1513,1457$. - H NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=9.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO})$, $7.80(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 7.65(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H})$, 4.61 (s, $1 \mathrm{H}, \mathrm{NH}$), 2.90 (ddd, $J=10.5 / 10.5 / 4.2 \mathrm{~Hz}, 1 \mathrm{H}, 4 \mathrm{a}-\mathrm{H})$, $1.50-0.79(\mathrm{~m}, 7 \mathrm{H}, 1-\mathrm{H}, 2-\mathrm{H}, 4-\mathrm{H}, 9 \mathrm{a}-\mathrm{H}), 1.14,0.88(\mathrm{~s}, 6 \mathrm{H}$, $12-\mathrm{H}, 13-\mathrm{H}), 0.87,0.79(\mathrm{~s}, 6 \mathrm{H}, 10-\mathrm{H}, 11-\mathrm{H}) .-{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=188.3(\mathrm{CHO}), 144.4(\mathrm{C}-7), 132.1$, 129.7, 126.6, 126.2, 117.4, (C-5a, C-5, C-6, C-8, C-8a), 47.6, $46.6,39.1,35.2,32.8,30.9,25.8,25.5,24.9,20.8$ (C-1, C-2, C-3, C-4, C-4a, C-9, C-9a, C-10, C-11, C-12, C-13). - MS $(70 \mathrm{eV}) ; m / z(\%): 305\left(51, \mathrm{M}^{+}\right), 290(92), 222(24), 149(26)$, 69 (76), 57 (100).
$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NOCl}$ Calcd.: 305.1546 Found: 305.1535 (MS); Calcd: C 70.82 H 7.87 N 4.59 Found: C 70.59 H 7.84 N 4.36.
(4aRS, $9 a S R$)-3,3,9,9-Tetramethyl-5-bromo-1,2,3,4,4a,9,9a, 10-octahydroacridine-7-carboxaldehyde (9d)
Flash chromatography on SiO_{2} (hexane/ethyl acetate $50: 1$, then $25: 1$) yielded $300 \mathrm{mg}(0.86 \mathrm{mmol}, 43 \%)$ of a pale yellow solid. m.p. $120^{\circ} \mathrm{C}$. $-\mathrm{IR}(\mathrm{KBr}) ~ v / \mathrm{cm}^{-1}=3402,2965,2847$, $1876,1592,1558,1515,1363,1327,496 .-{ }^{1} \mathrm{H} \operatorname{NMR}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=9.68(\mathrm{~s}, \mathrm{CHO}), 7.84(\mathrm{~d}, J=1.7 \mathrm{~Hz}$, $1 \mathrm{H}, 8-\mathrm{H}), 7.80(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$, 2.90 (ddd, $J=11.2 / 10.9 / 4.1 \mathrm{~Hz}, 1 \mathrm{H}, 4 \mathrm{a}-\mathrm{H}$), $1.43-0.76$ (m, $7 \mathrm{H}, 1-\mathrm{H}, 2-\mathrm{H}, 4-\mathrm{H}, 9 \mathrm{a}-\mathrm{H}), 1.12,0.77(\mathrm{~s}, 6 \mathrm{a}, 12 \mathrm{H}, 13-\mathrm{H}), 0.86$ $(\mathrm{s}, 6 \mathrm{H}, 10-\mathrm{H}, 11-\mathrm{H}) .-{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta / \mathrm{ppm}=$ 188.1 (CHO), 145.1 (C-7), 133.3, 132.2, 128.3, 126.6, 107.9 (C-5a, C-5, C-6, C-8a, C-8), 47.7, 46.3, 39.1, 35.2, 32.8, 30.8, $25.8,24.8,20.8$ (C-1, C-2, C-3, C-4, C-4a, C-9a, C-9, C-10, C-11, C-12, C-13). - MS (70 eV); $m / z(\%): 351\left(10, \mathrm{M}^{+}\right), 336$ (21), 86 (92), 84 (100), 51 (86).

$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NOBr}:$ Calcd.: 351.1023 Found: 351.1014 (MS);
 Calcd.: C 61.69 H 6.91 N 4.00
 Found: C 61.61 H 7.04 N 3.93.

Tris-N-[((4aSR,9aRS)-5-chloro-3,3,9,9-tetramethyl-7-methy-lidene-1,2,3,4,4a,9,9a-octahydroacridinyl)2-aminoethyl] amine (11)

To a solution of trisamine $\mathbf{1 0}(29 \mathrm{mg}, 0.20 \mathrm{mmol})$ in toluene $(5 \mathrm{ml})$ was added molecular sieves $4 \AA(1 \mathrm{~g})$ and then aldehyde $9 \mathrm{c}(183 \mathrm{mg}, 0.60 \mathrm{mmol})$ in small portions. The mixture was stirred for 3 d at room temperature and then filtered via Celite. The solvent was removed in vacuo to give $150 \mathrm{mg}(0.16 \mathrm{mmol}$, 80%) of a yellow solid. m.p. $140{ }^{\circ} \mathrm{C}$ (dec.). - IR (KBr) $\mathrm{v}^{\mathrm{c}} \mathrm{cm}^{-1}$ $=3415 \mathrm{~cm}^{-1}, 2965,2904,2857,2845,1639,1599,1510,1362$, 1323, 737. - ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) : $\delta / \mathrm{ppm}=7.92(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{HC}=\mathrm{N}), 7.89(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}, 8-\mathrm{H}), 7.53(\mathrm{~d}, J=1.4$ $\mathrm{Hz}, 3 \mathrm{H}, 6-\mathrm{H}), 4.33$ (s, $3 \mathrm{H}, \mathrm{NH}$), 3.74 (dd, $J=6.4 / 6.4 \mathrm{~Hz}, 6 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}=\mathrm{CH}$), 3.03 (dd, $J=6.4 / 6.4 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}$ $\mathrm{N}=\mathrm{CH}), 2.89(\mathrm{~m}, 3 \mathrm{H}, 4 \mathrm{a}-\mathrm{H}), 1.35-0.69(\mathrm{~m}, 21 \mathrm{H}, 1-\mathrm{H}, 2-\mathrm{H}$, $4-\mathrm{H}, 9 \mathrm{a}-\mathrm{H}), 1.20,0.93$ (s, 18H, 12-H, 13-H), 0.81 (s, 9 H), $0.73(\mathrm{~s}, 9 \mathrm{H}, 10-\mathrm{H}, 11-\mathrm{H}) .-{ }^{13} \mathrm{C}$ NMR ($\left.50 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta / \mathrm{ppm}$ $=160.0(\mathrm{C}=\mathrm{N}), 141.3(\mathrm{C}-7), 132.4(\mathrm{C}-5), 127.9,126.2,124.6$, 117.4 (C-5a, C-6, C-8, C-8a), $60.9\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}=\mathrm{CH}\right), 56.8$ $\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}=\mathrm{CH}\right), 47.3,46.9,46.7,39.2,35.4,33.0,30.8$, 26.5, 26.3, 25.0, 21.0 (C-1, C-2, C-3, C-4, C-4a, C-9, C-9a, C-10, C-11, C-12, C-13). - MS (70 eV); $m / z(\%): 1008$ (3, $\mathrm{M}^{+}+1$), 1007 (1, M^{+}), 690 (1), 611 (1), 308 (96), 306 (100). $\mathrm{C}_{60} \mathrm{H}_{84} \mathrm{Cl}_{3} \mathrm{~N}_{7}$ Calcd.: \quad C 71.50 H $8.34 \quad \mathrm{~N} 9.73$ Found: C 71.35 H 8.49 N 9.61.

X-ray crystal structure analysis of 11

$\mathrm{C}_{60} \mathrm{H}_{84} \mathrm{Cl}_{3} \mathrm{~N}_{7}, \mathrm{M}=1009.69,0.1 \times 0.1 \times 0.05 \mathrm{~mm}, a=12.629$ (7), $b=29.730(8), c=16.240(7) \AA, b=110.09(4)^{\circ}, V=5727$ (4) $\AA^{3}, \rho_{\text {calc. }}=1.171 \mathrm{mg} \mathrm{m}^{-3}, T=293 \mathrm{~K}, \mu=17.73 \mathrm{~cm}^{-1}$, no absorption correction, $Z=4$, monoclinic, space group $P 2_{1} / \mathrm{c}$ (No. 14), $\lambda=1.54178 \AA, \omega / 2 \Theta$ scans, 7638 reflections collected $(\pm h, \pm k, \pm l),[(\sin \Theta) / \lambda]=0.49 \AA^{-1}, 7208$ independent and 2917 observed reflections $[I>2 \sigma(\mathrm{I})], 653$ refined parameters, $R=0.079, \omega R^{2}=0.189$, max. residual electron density $0.85(-0.43)$ e \AA^{-3}. Data were collected on a EnrafNonius CAD4 diffractometer, programs used: MoIEN, SHELXS-86, SHELXL-93, SCHAKAL-92. See ref. [8].

References

[1] Reviews on supramolecular chemistry: a) J.-M. Lehn, Supramolecular Chemistry, VCH, Weinheim 1995. b) Frontiers in Supramolecular Organic Chemistry and Photochemistry (Eds.: H. J. Schneider, H. Dürr), VCH, Weinheim 1991.
c) F. Vögtle, Supramolekulare Chemie, Teubner-Verlag, Stuttgart 1989
[2] Recent examples: a) L. J. D'Souza, K. Maitra, J. Org. Chem. 1996, 61, 9494; b) S. C. Zimmerman, Z. Zeug, W. Wu, D. E. Reichert, J. Am. Chem. Soc. 1991, 113, 183; c) S. C. Zimmerman, W. Wu, Z. Zeng, J. Am. Chem. Soc. 1991, 113, 196; d) J. L. M. van Nunen, B. F. B. Folmer, R. J. M. Nolte, J. Am. Chem. Soc. 1997, 119, 283; e) F. Vögtle, T. Papkalla, H. Koch, M. Nieger, Chem. Ber. 1990, 123, 1097; f) P. Magnus, J. C. Morris, V. Lynch, Synthesis 1997, 506; g) J. N. H. Reek, J. A. A. W. Elemans, R. J. M. Nolte, J. Org. Chem. 1997, 62, 2234; h) A. Gleich, F. P. Schmidtchen, P. Mikulcik, G. Müller, J. Chem. Soc. Chem. Commun. 1990, 55; i) A. Galan, E. Pueyo, A. Salmeron, J. de Mendoza, Tetrahedron Lett. 1991, 32, 1827; j) H. Furuta, D. Magda, J. L. Sessler, J. Am. Chem. Soc. 1991, 113, 978; k) M. Harmata, C. L. Barnes, J. Am. Chem. Soc. 1990, 112, 5655; 1) F. G. Klärner, J. Benkhoff, R. Boese, U. Burkert, M. Kamieth, K. Naatz, Angew. Chem. 1996, 108, 1195; Angew. Chem. Int. Ed. Engl. 1996, 35, 1130
[3] a) S. Laschat, J. Lauterwein J. Org. Chem. 1993, 58, 2856; b) S. Laschat, R. Noe, M. Riedel, C. Krüger Organometallics 1993, 12, 3738; c) O. Temme, S. Laschat J. Chem. Soc. Perkin Trans. I 1995, 125; d) J. L. Schulte, S. Laschat, S. Kotila, J. Hecht, R. Fršhlich, B. Wibbeling Heterocycles 1996, 43, 2713
[4] O. H. Wheeler, Can. J. Chem. 1958, 36, 667
$[5]$ a) L. Syper, Tetrahedron Lett. 1966, 37, 4493; b) W. S. Trahanowsky, L. B. Young, J. Org. Chem. 1966, 31, 2033
[6] For alternative oxidation methods of benzylic hydrogens see: a) R. A. Glenn, J. R. Bailey, J. Am. Chem. Soc. 1941, 63, 639 (selenium dioxide); b) J. Thiele, E. Winter, Liebigs Ann. 1900, 311, $353\left(\mathrm{CrO}_{3} /\right.$ acetic anhydride)
[7] G. S. K. Rhao, M. v. Naidu, Synthesis 1979, 144
[8] Crystallographic data for compound $\mathbf{1 1}$ have been deposited at the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-100998. Copies of the data can be obtained free of charge on application to the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: Int. code +(1223) 336-033; e-mail: deposit @ccdc.cam.ac.uk
[9] W. C. Still, M. Kahn, A. Mitra, J. Org. Chem. 1978, 43, 2923
[10] S. Sakane, K. Maruoka, H. Yamamoto, Tetrahedron 1986, 42, 2203
[11] a) E. Buhleier, W. Wehner, F. Vögtle, Synthesis 1978, 155; b) R. Moors, F. Vögtle, Chem. Ber. 1993, 126, 2133

Address for correspondence:
Prof. Dr. Sabine Laschat Institut für Organische Chemie Technische Universität Braunschweig Hagenring 30
D-38106 Braunschweig
Fax : 0531-3915388
email: s.laschat@tu-bs.de

[^0]: ${ }^{1}$) Presented in part at the third conference on iminium salts, Stimpfach-Rechenberg (Germany), September 17-19, 1997

